On the Apparent Pareto Front of Physics-informed Neural Networks
نویسندگان
چکیده
Physics-informed neural networks (PINNs) have emerged as a promising deep learning method, capable of solving forward and inverse problems governed by differential equations. Despite their recent advance, it is widely acknowledged that PINNs are difficult to train often require careful tuning loss weights when data physics functions combined scalarization multi-objective (MO) problem. In this paper, we aim understand how parameters the physical system, such characteristic length time scales, computational domain, coefficients equations affect MO optimization optimal choice weights. Through theoretical examination where these system appear in PINN training, find they effectively individually scale residuals, causing imbalances with certain choices parameters. The immediate effects reflected apparent Pareto front, which define set values achievable gradient-based training visualize accordingly. We empirically verify can be used successfully compensate for scaling parameters, enable selection an solution on front aligns well physically valid solution. further demonstrate altering parameterization, shift exhibit locally convex parts, resulting wider range becomes successful. This work explains PINNs, highlights utility proposed weighting schemes.
منابع مشابه
Computing the Complete Pareto Front
We give an efficient algorithm to enumerate all elements of a Pareto front in a multi-objective optimization problem in which the space of values is finite for all objectives. Our algorithm uses a feasibility check for a search space element as an oracle and minimizes the number of oracle calls that are necessary to identify the Pareto front of the problem. Given a k-dimensional search space in...
متن کاملPhysics of Neural Networks
The material basis of our thinking, intelligence and creativity are 1013-1014 nerve cells (neurons) which in our brain are densely packed into a grey sub stance weighing about 1.5 kg. Each neuron has — like the root of a tree — highly branched dendrites that collect information from about 10000 other nerve cells. This huge network, which on a microscopic scale looks rather homogeneous and diso...
متن کاملDeep Jointly-Informed Neural Networks
In this work a novel, automated process for determining an appropriate deep neural network architecture and weight initialization based on decision trees is presented. The method maps a collection of decision trees trained on the data into a collection of initialized neural networks, with the structure of the network determined by the structure of the tree. These models, referred to as “deep jo...
متن کاملComputational physics: Neural networks
2 Networks of binary neurons 5 2.1 Neural information processing is noisy . . . . . . . . . . . . . 5 2.2 Stochastic binary neurons and networks . . . . . . . . . . . . . 11 2.2.1 Parallel dynamics: Little model . . . . . . . . . . . . . 13 2.2.2 Sequential dynamics . . . . . . . . . . . . . . . . . . . 13 2.3 Some properties of Markov processes . . . . . . . . . . . . . . 14 2.3.1 Eigenvalue s...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3302892